MUSSEL FARMING IN **AWARMING OCEAN**

PHYSIOLOGICAL RESPONSES INVESTIGATED

The following factors influence heat tolerance:

- Integrated thermal history (e.g. temperatures experienced in the recent past)
- Genetics & parent's experiences
- Well fed mussels are more tolerant to heat stress
- Other stressors (e.g. pollutants, microplastics, ocean acidification) are likely to lower thermotolerance.

Sublethal physiological responses are observed at temperatures ≥22C, for example:

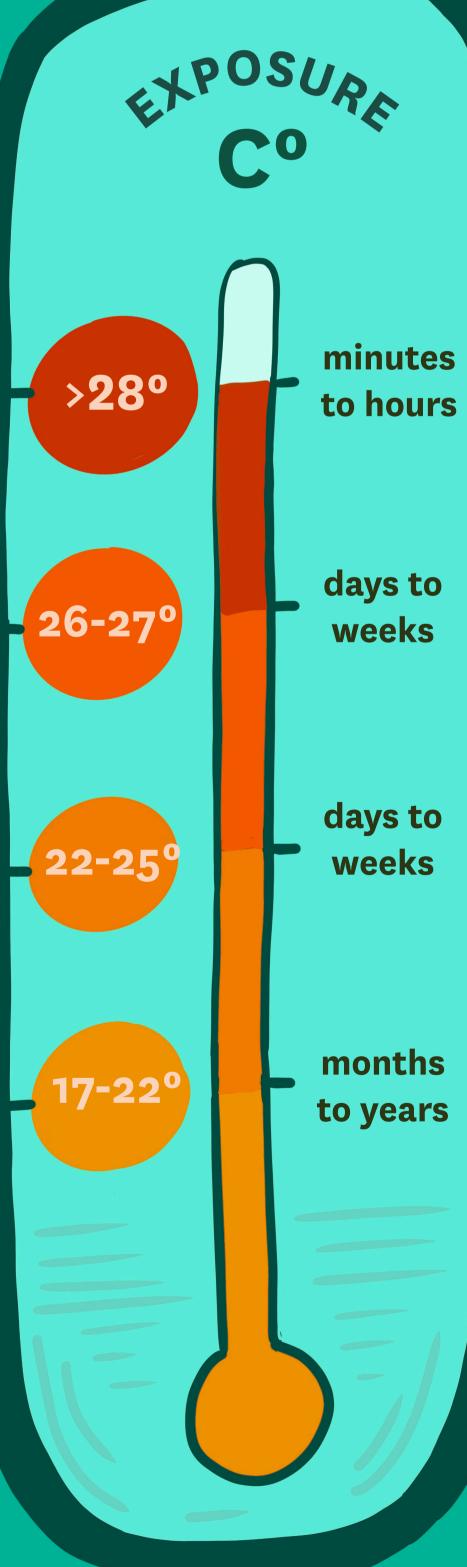
- Heat-shock proteins ↑
- Antioxidant response ↑
- Oxidative damage ↑
- Energy available for growth \checkmark
- Investment in reproduction/conditioning \checkmark

Mussels are healthy & survival is high at these seawater temperatures, but reproduction & physiological condition are impacted if mussels are exposed for long periods (e.g. for many months).

Mortality & deteriorating health of Greenshell mussels on marine farms is increasing during summer. Recent laboratory studies have investigated what seawater temperatures are stressful for Greenshell mussels. These lab results provide a valuable insight into the biological mechanisms influencing thermotolerance. They help us to understand what might be causing summer mortality on mussel farms & how we might prevent it as the climate changes.

LAB STUDIES:

ACUTE


Mussels exhibit extreme physiological stress at seawater temperatures > 28°C & temperatures > 30°C are lethal if mussels are exposed for more than a few hours.

SUBCHRONIC

A tipping point exists at 26 °C. If this temperature is maintained for several days, heavy mortality sets in. Exposure to 26 °C is likely to apply selection pressure in wild populations & could be used to identify heat-tolerant breeding lines for aquaculture.

Mussel health is likely to be compromised if mussels are exposed to these temperatures for days to weeks. Mussels elicit a stress response & become more vulnerable to pathogens & harmful algal blooms.

CHRONIC

IMPLICATIONS

MARINE HEAT WAVES

Marine heatwaves that result in seawater temperatures spiking to 26°C for several days are likely to cause significant mortality.

REGION SPECIFIC VULNERABILITIES

Mussels on marine farms in warmer regions of NZ (e.g. the Hauraki Gulf) are particularly vulnerable to ocean warming.

Shellfish Aquaculture Research Platform

PROUDLY HOSTED B

SUSTAINED HEAT STRESS

Sustained seawater temperatures of 22 - 25°C may cause deteriorating health & survival of farmed Greenshell mussels especially if other stressors (e.g. pathogens) are also present. Timing of reproduction may be impacted.

THERMAL HISTORY AND RECOVERY

Multiple elevated temperature events in succession will reduce the capacity of mussels to recover & increase the likelihood of stock losses. Duration of exposure & rate of temperature change will determine health outcomes for mussels.

POSSIBLE MITIGATION STRATEGIES

Mitigation measures such as moving marine farms to colder waters (e.g. into the open ocean, suspending lines deeper in the water column, moving to colder coastlines), & using land-based hatcheries to selectively breed for thermotolerance should be considered in aquaculture management plans.

Many other sources of stress can compound the effects of heat - important to understand and mitigate these wherever possible